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ABSTRACT
Let X be a pointed simplicial set. The free group functors F [10] and T [1]
provide simplicial models of QS| X | and Q*S>| X |. The simplicial group FX
is a simplicial subgroup of I'X, and this corresponds to the inclusion
QS| X| C Q°S*X. In this paper we define free group functors '™ such that
T™X is a model of Q"S"| X |. Moreover, there is natural filtration

FX=TWXcrexc...cmmxc...crx,
corresponding to the filtration

QS| X|CcQSHX|C--- CQS"| X} C--- CQ°S™| X|.
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§1. Introduction

Let Y be a pointed space and let # be a positive integer. Let Q"S"Y denote the
n-fold loops on the n-fold (reduced) suspension of Y. There is a natural
inclusion Q"S"Y C Q"*!$"*'Y given by

Qigy: Q'S"Y = Q" QSS"Y
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where iy: Y —QSY is the adjoint of the identity map of the suspension
SY — SY. The union of the chain of inclusions

QSY c Q*$YC ... CQ'S"Y ...

is denoted Q*S*Y and is an infinite loop space. Several authors have
given topological models of the loop spaces Q"S"Y and Q*S*Y (for example
James [6), May [8], Milgram [9]). In this paper we give simplicial models of
these loop spaces.

Simplicial models have been given for the two extreme cases, SY and
Q~S$*Y. Milnor’s functor F [10] takes a pointed simplicial set X to a free
simplicial group FX such that the geometric realization |FX| is naturally
homotopy equivalent to S | X |. At the other extreme the functor I', defined
by Barratt and Eccles [1], takes X to a simplicial group I'X such that the
realization |I"X| is naturally homotopy equivalent to QS| X|. Moreover,
FX is a simplicial subgroup of I'X, and the inclusion FX C I'X corresponds
naturally to.the inclusion QS| X| C Q*§°| X|.

In this paper we fill the gap between F and I by defining functors '™ from
pointed simplicial sets to free simplicial groups. We will obtain a natural
filtration of ' X by simplicial subgroups

MmxYcrxc...ciwxc...crx

such that the realization |I™X| is naturally homotopy equivalent fo
Q"s* | X|.
The main result is:

1.1. TuEoREM. Let X be a pointed simplicial set and let n =1 be an
integer. There exists a natural “zigzag” of weak (homotopy) equivalences
(defined in 3.11) connecting the simplicial groups T""X and G"E"X (where E
(3.5) is the simplicial suspension functor and G (3.6) is the functor that assigns to
a reduced simplicial set K a free simplicial group GK having the homotopy type
of the loops on K). Moreover, the inclusion T X C I'** VX corresponds natur-
ally to the inclusion G"E"X C G**'E"*'X defined in 3.11.

The exact relationship between the loop functors G and Q, and between the
suspension functors E and S is discussed in the appendix. This discussion and
1.1 immediately imply

1.2. CorOLLARY. Let X be a pointed simplicial set and let n = 1 be an
integer. The geometric realization |T™X | is naturally homotopy equivalent to
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Q"S"| X |. Moreover, the inclusion |T'™X | C |T"*YX| corresponds naturally
to the inclusion Q"S" | X | Cc Q*+1§*+11 X|.

1.3. Organization of the paper. We work simplicially. The basic results of
simplicial homotopy theory can be found in [7].

We define (in §2) functors I'* from pointed simplicial sets to free sim-
plicial monoids. The functors I'™ (3.2) are the group completions (3.1) of the
functors I'™*. The configuration complexes C,Z, (2.7) are the crucial ingre-
dient in the definitions of [+ and of I'™. The main result is proved in §3
using Lemma 3.8 which is proved in §§4-5.

The author would like to thank his friend and advisor D. M. Kan for many
helpful discussions.

§2. The functors '™+

In this section we recall the definition of the functor I'* [1, 3.1}, and use the
same type of construction to define, for each integer n = 1, a functor '™+, The
properties of the functors I'* (defined in 2.6) and '+ (defined in 2.9), which
will arise in this section, are collected in the following proposition:

2.1. ProrosITION. Let X be a pointed simplicial set and let n = 1 be an
integer.

(i) T+ (2.6) and T™* (2.9) are functors from pointed simplicial sets to free
simplicial monoids.

(il) T™* X is a simplicial submonoid of T *V* X, and the union of the chain
of inclusions

M xXcr®*xc...ctw+yc...

is the simplicial monoidT'* X.
(iii) The basis of the free simplicial monoid T+ X is a subset of the basis

of T"*VX and the union of these bases for all n = 1 is the basis (2.14) of
I'X.

2.2. Thefunctor W. Thisis a functor from sets to simplicial sets. Let 4be a
set and let f: A — B be a map of sets. The simplicial set WA is defined by

(WA =4 ={(ap @y, ..., a) | 4, €A},
dag a,....,aq)=(ag...,di,...,a) (i.e. omit g;),

sag ay,....a4)=(ay...,a,a;,...,a4) (ie. repeat a,).
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The simplicial map Wf: WA — WB is defined by

Wiay, ai, . . ., a) = (flao), fla), . .., flay))-

2.3. The permutation groups. LetJ C {1, 2,...} be a finite set of positive
integers. Let X; denote the group of permutations of /. In the special case that
J={1,2,..., p}, let Z, denote the permutation group X, of the set J =
{1,2,..., p}. In particular X, = X, is the trivial group.

Suppose that J contains j elements. An ordering of J is a sequence
(i, 1, . . -, 1;) that lists each integer in J exactly once. We identify the group X,
with the collection of orderings of J, identifying the permutation a €X; with
the ordering (¢, &, . . ., ;) such that a(f)) <a(ty) < - - - <af?).

2.4. The reduction maps. Let J and K be finite sets such that JC K C
{1,2,...}. The reduction of an ordering (t,,1,, ..., %) of K to an ordering
of J is obtained by taking the subsequence (¢, 4,...,t) consisting of
the integers in J. Then the reduction map of permutations RX:X,—%, is
defined using the identification of permutations and orderings (2.3). Applying
the functor W to the map RX:Zy—3X;,, we define the reduction
map R¥: WXy — WZX,;. When it is clear which reduction map is meant, we
abbreviate R¥ to R, or to R.

2.5. The diagonal action. Let a;, fE€X; be permutations. The diagonal
action of X; on WZ,is defined by

(ao,al) e ’ak)'ﬂ =(a0°B’a1°ﬂa cee ’akoﬂ)'

2.6. ThefunctorT'* [1,3.1]. Let Xbe apointed simplicial set and let *E X,
be the basepoint. Let VX denote the disjoint union U, WZ, X X? where X?
is the p-fold cartesian product. The equivalence relation ~, generated by the
following relations, respects the face and degeneracy maps of VX; we define
the simplicial set I'* X to be the quotient simplicial set VX/ ~. Let wE WZ,
and x; € X, be k-simplices, let «€Z, be a permutation, and let R: WX, —~
WZ,_, be the reduction map (2.4). The relations generating ~ are

@ (W, X1, X5 ..o, Xp) ~ (W, X1y Xe2ps - - - 5 Xep))s

) W, X1, ..., X1, ) ~(R(W), X1, . .., X5 )

The equivalence class of a simplex (w, x,, ..., x,)€ WX, X X? is denoted
[w, Xy, ..., x,]. The canonical choice for the basepoint of I'* X is the equiva-
lence class [1, ¢] of the O-simplex (1, ¢) € WX, X X°.

Let f: X—Y be a pointed simplicial map. The simplicial map I'*f:
I'*X—=TI"Yis defined by



334 J. H. SMITH Isr. J. Math.

F+f[w, Xiyeooy xp] = [W, .f(-xl)a A ] ﬂxp)]'

At this point we have defined I'* as a functor from pointed simplicial sets to
pointed simplicial sets.

2.7. The configuration complexes. Recall that the n-skeleton, sk, X, of a
simplicial set X is the simplicial subset of X generated by the simplices of
dimensions = #. Let p = 0 be an integer and let {i,j} be a pair of integers
such that 1 =i <j=p. In 2.4 we defined a reduction map R;; ;,: WZ,—~
WZ ;- The configuration complex C,Z, (n = 1) is the intersection of the
pull backs

R (ky WZi )

for all pairs {i,j} C{1,2,..., p}.

The reason for the name “configuration complex” is that it seems likely that
the realization |C,Z,| is homotopically equivalent to F(R", p), the configu-
ration space of p distinct points in R”".

The configuration complexes C,Z, are used (2.9) in the definition of the
functor I'™*. The properties of C, X, which we will need are

2.8. PrROPOSITION. Letp =0 andn =1 be integers.

(i) The simplicial subset C,Z, C WZ, is closed under the action of Z,.

(ii) The simplicial subset C,X, is contained in C,,,X, and the union
U,z C.Z, is WZ,.

(iii) The reduction map R: WX, — WZ,_, restricts to a map of simplicial
subsets R: C,Z,—~C,%,_,.

Proor. To prove (i) we note that the following two statements are equi-
valent:

(@) R; j(w-a)Esk, ;WL ),

() Ry, ain(W) E Ky -1 W2iaiiaiy»
where w €E WX, is a simplex and a €Z, is a permutation.

Statements (ii) and (iii) are straightforward consequences of Definitions 2.4
and 2.7.

2.9. The functor T™W*, Let X be pointed simplicial set and let *€ X,
denote the basepoint. Let V™ X denote the disjoint union

vex=U CE,XX°.

p20
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It follows from 2.8(i) and (iii) that ¥ )X is a simplicial subset of VX and that
V®™X is closed under the equivalence relation ~ (2.6). The simplicial set
I'™* X is the quotient simplicial set ¥ WX/~ . Clearly '™* X is a simplicial
subset of 't X = VX/ ~, and it follows from 2.8(ii) that I'* X is filtered as
follows:

+xcro*xc...crxc...cr+x.

Let f: X—Y be a pointed simplicial map. The simplicial map I'* f:
't X —T*Y (2.6) restricts to a simplicial map '™* X —I'"*Y and thus '™+
is a functor from pointed simplicial sets to pointed simplicial sets.

The definition (2.12) of the product on I'* X uses

2.10. The product WX, X WX,—~WZ,.,. Let p=0 and ¢=0 be
integers. The cartesian product X, X X, is identified with a subgroup of Z, , , as
follows. For permutations aEZ, and f €X,, the permutation « X EZ, , , is
defined by

a X (i) = ofi), i€{(1,2,...,p},

aXp(j+p)=p()+p, JE{1,2,...,4}.

The product WX, X WX, — WX, is the simplicial map defined as follows.
For k-simplices

w=(ao,a1,...,ak)E sz and U=(ﬂ0,ﬂ1,...,ﬂk)e qu,
let w XvEWZ, ,, be given by
wXv=(agXBpa;XBy...,arXB.

2.11. PROPOSITION. Let wEWZE,, vEWZE, and u € WZ, be k-simplices,
kz0.

(i) The product (2.10) is associative, i.e. (WX v)Xu=w X (vXu)€
sz +q+re

(ii) The product w X vE€ WZ, ., is in the simplicial subset C,Z,,, C WX, .,
ifand only if both w € C, X, and vEC,Z,.

The proof is a straightforward computation using Definitions 2.7 and 2.10.

2.12. The product onT*X[1, 3.9]. Let[w,x,,...,x,]and [v,y,,...,¥,]
be k-simplices (k = 0) of I'* X. Their product is given by

WX, x5, 005%, V..., V)
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2.13. COROLLARY OF 2.11. Let X be a pointed (» € X,) simplicial set.

(i) The simplicial set T* X with the product defined in 2.12 is a simplicial
monoid;, its unit element in dimension k is s¥{1, ¢], where [1, ¢} is the basepoint
of T*X (2.6).

(ii) For k-simplices a, bEX* X, the product a-bEI't X is in the simplicial
subset T"™* X if and only if both a ET™* X and b €T™* X, In particularT™W* X
is a simplicial submonoid of T* X.

The map I'* f:T'* X —I't Y (2.6) and its restriction '™+ f: "W+ x »T"W+y
(2.9) are simplicial homomorphisms, and therefore I'* and '™+ are functors
to simplicial monoids. The next proposition and corollary show that I'* and
I'™* are in fact functors to free simplicial monoids.

2.14. ProPOSITION [1, 3.11]. Let X be a pointed (* € X;) simplicial set. The
simplicial monoid I'* X is a free simplicial monoid.

ProoF. Using relations (a) and (b) of 2.6, it follows that each k-simplex of
I'*X can be put in the form [w,Xx,,...,x,] with wEWZ, and x,EX,
k-simplices such that x; # s§+, 1 < i < p. The simplex [w, X, . . ., x,] is said to
be irreducible if there is no permutation « €Z, such that w -a € WZ, is in the
product WX, X WX,_, C WZ, for some integer 7, 1 =7 < p — 1. It is proved
in [1, 3.11] that each k-simplex can be written uniquely as a product of
irreducible k-simplices. Notice that a degeneracy of an irreducible simplex is
also irreducible. Therefore I'* X is a free simplicial monoid and its basis is the
set of irreducible simplices of I'* X.

Propositions 2.14 and 2.13(ii) imply

2.15. CorOLLARY. The simplicial submonoid T™W+*X CT*X is a free
simplicial monoid and its basis is the set of simplices T"™+X which are
irreducible inT* X.

2.16. ReMARK. It follows from 2.7 that C,Z, is the O-skeleton of WZ,
which is the discrete simplicial set Z, (i.e. it has Z, in each dimension and the
face and degeneracy maps are the identity map X, —Z,). The irreducible k-
simplices of I"* X (and thus its basis) are the k-simplex of X and 1 €Z, is the
identity permutation of {1}. Therefore the simplicial monoid I'* X coincides
with Milnor’s [10] simplicial monoid F* X which is the simplicial version of
the James construction.
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§3. The functors I'™ and the main result

In this section we define, for each integer n = 1, a functor I''” from pointed
simplicial sets to free simplicial groups, and we prove the main result (1.1).
The proof uses Lemma 3.8 which will be proved in §§4-5.

3.1. The group completion. Let M be a monoid and let e denote its unit.
The group completion of M is defined by adjoining inverses to M as follows.
Let FM be the free group with a generator m for each element m € M and with
¢ identified with the unit of FM. Let N be the normal subgroup of FM that is
generated by the elements of the form wduv ! where u, vEM. The group
completion of M is the quotient group UM = FM/N.

The group completion of a homomorphism of monoids h: M — M’ is the
homomorphism of groups Uk : UM — UM’ induced by the natural homomor-
phism of free groups Fh: FM — FM’,

The group completion of a simplicial monoid M is the natural simplicial
group UM defined by taking the group completions of the monoids M, and of
the homomorphisms 9;: My = M, _, and S;: M, — M, .

3.2. The functors T and T, The functor T [1, 4.3] is the composition of
functors UT'*, and the functor '™ is the composition U™+,
The definition and Proposition 2.1 immediately imply

3.3. ProrosITION. Let X be a pointed simplicial set and let n = 1 be an
integer.
(i) T and T™ are functors from pointed simplicial sets to free simplicial
groups. A basis of TX (T'WX) is the set of irreducible simplices of TX (™ * X).
(ii) T'™X is a simplicial subgroup of T"*YX and the union of the chain of
inclusions
mxcr®xc...ctwxc-.-

is the simplicial group ' X.

3.4. REMARK. It follows from Remark 2.16 that the functor I'V coincides
with Milnor’s functor F[10]. A natural inclusion i, : X —I'\.X is defined on the
k-simplices x € X, by the formula

1x(x) = [s§1, x].

3.5. The functors Cand E. Let X be a pointed (* € X;) simplicial set. The
cone on X is the simplicial set CX defined as follows. The k-simplices of CX are
the pairs( p, x), where pis aninteger 1 < p < k,and x € X, _,is a simplex, and
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where (p, s(’f “P% isidentified with (k, *). The face and degeneracy operators on
CX are defined by the formulas

s{p,x)=(p+1,x), i<p,
s{p,x)=(p,8i-,x), iZp,
d(p,x)=(p—1Lx), i<p,
0(p,x)=(p,8;_,x), iZp,
8i(1, x) = (0, #), X EX,.

To justify calling CX the cone on X we observe that:

(i) There is a natural inclusion of X into CX, identifying the simplex x €X
with the simplex (0, x)ECX.

(i1) The simplicial set CX is contractible.
(A contracting homotopy is given in 5.4.)

Let f: X—Y be a pointed simplicial map. A natural simplicial map
Cf: CX — CY is defined by

CAlp, x)=(p, fx)).
The suspension of X is the natural quotient simplicial set EX = CX/X.

3.6. Thefunctor G[7,p. 118]. Let Xbeareduced simplicial set,i.e. Xhasa
unique 0-simplex * € X,. The simplicial group GX is a loop group of X and is
defined as follows. The group of k-simplices G, X is the group that has

(i) one generator x for each (k + 1)-simplex x EX, , ,

(ii) one relation 5y = ¢; (the unit of G, X) for each k-simplex y € X,.
Clearly the groups G, X are free. Thus the face and degeneracy homomor-
phisms 8;: G, X — G, _ X and s5;: G, X — G, . X are defined by the following
formulas on the generators

BX =dpx "0, x
0;X =04 X, 1<i=k,
85X =841 X, 0=<i=k.

Let f: X—Y be a map of reduced simplicial sets. A natural simplicial
homomorphism Gf: GX — GY is defined on the generators by the formula

Gf(x) = f(x).
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The first step in proving 1.1 is

3.7. LEMMA. Let X be a pointed simplicial set and let n = 1 be an integer.
There exists a simplicial group K™X (defined in §4) and natural simplicial
homomorphisms

e+ — KWX « GI™EX

which are weak equivalences.
The proofs of 3.7 and 1.1 use Lemma 3.8 which will be proved in §§4-5.

3.8. LeMMA. Let X be a pointed simplicial set and let g. CX—EX be
the natural quotient map (3.5). There is a natural filtration (defined in §4) of
I'CX by simplicial subgroups

™mXCcT®XC...CT"XC...CICX

such that:

(i) T™WCX and I'"*YX are simplicial subgroups of T"X and T™X is a
simplicial subgroup of T"*YCX,

(ii) The simplicial homomorphism T'g : TCX —T'EX restricts to a homomor-
phism y® : T®X —-TWEX.

It follows from (i) and (ii) that I'"*VYX is a simplicial subgroup of the
kernel of the homomorphism y™ : TWX —T'™EX, which is denoted K"X =
ker y™,

(iii) The inclusion T"+*YX C K™X is a weak equivalence.

(iv) T™X is contractible (i.e. it is connected and its homotopy groups
vanish).

3.9. PrRooF oF 3.7. The simplicial group K™X is the kernel of
™ TWX —TWEX. The natural simplicial homomorphism I'**+)X — K™ X
of 3.7 is the inclusion "+ VX C K™ X which, by 3.8(iii), is a weak equivalence.

To define the natural simplicial homomorphism GT"™EX — K™X consider
the principal fibration

K®X—T"WX—-TWEX.

The total space T™X is contractible and it follows from [7, p. 123] that there
exists a simplicial homomorphism (not uniquely)

A" : GTWEX — KX
which is a weak equivalence. The procedure for defining such an A™ is as
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follows. Find a pseudo-cross section [7, p. 73] (i.e. a cross section commuting
with all faces and degeneracies other than d,) 6™ :I'™EX — T"WX of the
homomorphism y® : TWX —T™WEX. Then define 2 on the generators of the
free simplicial group GT™EX by the formula

h"a) = 6"(9ya) "' - a"(9,a),

where a ET™EX is a simplex.

Therefore to define a natural simplicial homomorphism h™ : GTWEX —
K™X it suffices to define a natural pseudo-cross section o™ : I'"WEX — T™X,
Note that there is a pseudo-cross section r: EX — CX of the quotient map
g: CX~ EX given by

rg(p,x)=(p,x), pzl

where ( p, x)€ CX is a simplex. The pseudo-cross section ¢ : T'EX — T™WX
is the composition T'™EX —T"WCX C T™X of I'™r: WEX —I'"™CX (which
makes sense even though r is not a simplicial map) and of the inclusion
'™CX c T™X (3.8).

3.10. LEMMA. Let X be a pointed simplicial set. The simplicial groups TV X
and GEX are naturally isomorphic.

Proofr. Let (1, x)ECX be a simplex and let y €EEX denote the image
g(1, x), where g: CX — EX is the quotient map. The isomorphism f: WX —
GEX is defined on the generators of 'V X by the formula

ﬂs(l)c‘, X ] =J.
We now complete the

3.11. ProoF oOF 1.1. The infinite diagram defined below proves 1.1. Itisa
natural commuting diagram of simplicial homomorphisms and simplicial
groups. The nth row is the “zigzag” of weak equivalences connecting the
simplicial groups I'™.X and G"E"X. The slanting arrows on the right hand side
of the diagram are the inclusions G"E"X C G"*'E"*'X defined by

G"’E’x: G"E"X —» G"GEE"X = G"*\E"+'X

where the inclusion 1,: X — GEX is obtained by combining 3.4 and 3.10.

It follows from the commutativity of the diagram that the inclusion

I'™X c I+ YX corresponds naturally to the inclusion G*"E"X C G"*'E"+'X.
The diagram is
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t ! t i !

[9X — KOX « GTOEX — GKPEX «— G TOEXX —
t 1 t i t
[®X - KOX « GTPEX — GKWEX — GTWE2X
t 1 t I
MY — KOX « GTWEX GPE*X
t t|
oy GE2X
T
GEX
(a) (b) (c) d) (e)

The construction of this diagram requires comment. The basic idea is that
columns (a), (b) and (c) are constructed using 3.7 and 3.8, and that (a), (b) and
(c) generate the rest of the diagram by “replication”.

The horizontal maps from column (a) to column (b) and the maps from (c) to
(b) come from Lemma 3.7 and are, therefore, weak equivalences. The vertical
maps in (a) and (b) are the inclusions given in 3.4 and 3.8. The vertical maps in
(c) are defined by applying the functor G to the natural inclusions T'™EX C
I'*+YEX. It follows from the definitions of the maps that the subdiagram
generated by columns (a), (b) and (c) commutes.

To “replicate” this subdiagram on (a), (b) and (c) we replace X by its
suspension EX and then apply the functor G to the diagram. The resulting
diagram is the one generated by columns (c), (d) and (e). The procedure is
repeated indefinitely to obtain the rest of the diagram. Since G preserves weak
equivalence, it follows that all the horizontal maps of the diagram are weak
equivalences.

§4. The relative functors

In this section we define relative functors I (I'™*) from pointed pairs
(X, A) of simplicial sets to free simplicial groups (monoids). The simplicial
group T™X (3.8) is defined to be I'""(CX, X) where CX is the cone on X (3.5).
The properties of T™WX =I'"XCX, X) given in Lemma 3.8(i), (ii) and (iii) are
special cases of properties (4.5 and 4.7) of the free simplicial groups I*(X, A).
Lemma 3.8(iv) will be proved in §5.

4.1. The simplicial subsets ski WX ;, and sk, WX, ;. Let n=1 be an
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integer and let {i, j} be a pair of integers. The group X , = {1, a} is a two
element group, and so the simplicial set sk,WZX; ;, has exactly two non-
degenerate n-simplices, (1, e, 1,...) and (a, 1, o, ...). The simplicial subset
sky WZ ;, C sk, WX ;, is the one that is generated by the non-degenerate
n-simplex (l,e,1,...). The simplicial subset sk, WX ; Csk,WZ; , is
generated by the non-degenerate n-simplex (o, 1, a, . . .).

An immediate consequence of 4.1 is

4.2. PROPOSITION. Given integersn =1, i, and j, then
(l) Sk: WZUJ} ﬂ Sk,,_ WZ(,',” == Sk,,_l WZ(,"” N
(ll) Sk;— WZ(,'J) U Skn— WZ(,-’}-) = SknWZ(i,j} .

4.3, The free simplicial monoid T"™*(X, A). Let(X, A)be a pointed pair of
simplicial sets and let # = 1 be an integer. The simplicial subset ' *(X, 4) C
" +Y+ X consists of those simplices [w, x;, X, . . ., X,]ETM®+D* X such that,
for integers { and j withl =i <j = p,

(@) Ry (W)Esk, WZ, ;,,if x, EX — 4,

(b) Ry (w)Eski WE ), if x, EX — A.

As in 2.13(ii), the product u -vET* X of k-simplices #, vEI'* X is in the
simplicial subset I'™*(X,A4) if and only if both u€I'*(X,4) and
veETWH(X, A). Therefore, (X, A) is a simplicial submonoid of I'* X, and
I'™+(X, A) is a free simplicial monoid, its basis is the set of irreducible
simplices of I'* X (2.14) contained in I'™* (X, 4).

The definition of I'™*(X, 4) is natural for maps f:(X,4)— (Y, B) of
pointed pairs of simplicial sets. The homomorphism I'* f: T* X —=TI"*Y (2.6)
restricts to a homomorphism I'* f: TW+(X, 4A)—=T"W*(Y, B).

4.4. The free simplicial group T"(X, A) is the group completion (3.1) of the
free simplicial monoid I'*(X, A4). It follows from the comments in 4.3 that
the relative I'™ is a functor from pointed pairs of simplicial sets to free
simplicial groups.

Definitions 4.4 and 4.3 and Proposition 4.2 together imply

4.5. PROPOSITION. Let (X, A) be a pointed pair and let » € A, denote the
basepoint. The following equalities and inclusions of simplicial groups hold:
(i) T¥(X, ») =T"X,
(i) T™(X, X) =T0+vy,
(iii) T™X C T"(X, 4) CT"+VX,
(iv) T4 C TO(X, A).
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4.6. REMARK. Note that statements (i) and (ii) of Lemma 3.8 are
corollaries of 4.5.

4.7. LEMMA. Let (X,A) be a pointed pair of simplicial sets and let
[:(X,A)—~(X/A, *) denote the quotient map. Let Ker™(X, A) denote the
kernel of the homomorphism

r™f: TE(X, A)—~T"(X/A, ») =T™WX/A.

The inclusion T"*14 C Ker™)(X, A) (which exists by 4.5(iv)) is a weak eq-
uivalence.

The homomorphism I'W: T™WX ->TWEX of 3.8 is I'Wg: IT"™(CX, X)—
T™EX where g: (CX, X)— (EX, ) is the quotient map (3.5).

4.8. CorROLLARY. The inclusion T"*DX —K®MX =Ker"™(CX, X) is a
weak equivalence.

The rest of this section is devoted to the proof of 4.7. The first part of the
proof uses bisimplicial sets and a summary of their properties can be found in
[2, §1]. In particular we will use the

4.9. HOMOTOPY INVARIANCE OF THE DIAGONAL [4, Ch. XI1,§4). IfH—L
is a map of bisimplicial sets such that, for each integer k = 0, the map at level p
H, ,— L, , is a weak equivalence, then the diagonal map Diag H — Diag L is
also a weak equivalence.

The first part of the proof is a reduction to the case that (X, A) is a pointed
pair of discrete simplicial sets. This is done by realizing the inclusion
I'*+b4 C Ker®X( X, A) as the diagonal of a bisimplicial map and then using 4.9.

Note that Ker”(X, A) is a functor from pointed pairs to simplicial groups.
Let L™(X, A) denote the bisimplicial group that at level p is defined by

LOX, A),,, = Ket™(X,, 4,).

The face and degeneracy maps between levels are the simplicial homomor-
phisms Ker™X(9;) and Ker™)(s;) where 9, and s; are the face and degeneracy maps
of (X, A).

Using the same construction, let H"* "4 denote the bisimplicial group that
at level p is defined by

(H-("'H)A),,p =1’(n+l)Ap.
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Let H**Y4 — L®)Y(X, A) denote the bisimplicial homomorphism that is the
inclusion I'"*Y4, C Ker™(X,, 4,) at level p.

It follows that

Diag L)X, A) = Ket"(X, A),

Diag H**V4 =T*+1y4,

Diag[H"*+Y4 — L™)(X, A)] is the inclusion I'** (X, 4) C Ker™(X, 4).

It follows from 4.9 that if the inclusion I'* ¥4, C Ker®X(X,, 4,) at each level
p = 0 is a weak equivalence, then the inclusion I'** P4 C Ker™(X, A) is also a
weak equivalence.

So we can assume that (X, A) is a pointed pair of discrete simplicial sets.
Therefore X = A v B where B is the quotient X/4. Recall that f: (4 vB,A)—~
(B, *) is the quotient map. Let g: (4 vB,4)—(A4, A) denote the map that
smashes B to the basepoint.

The homomorphism I'g: T'")(4 v B, 4) >T"(4, 4A) =T**14 is a retrac-
tion onto the simplicial subgroup I'"*Y4 C I'"(4 v B, A). Hence the inclusion
I'**b4 C Ker™(4 v B, A) is a weak equivalence if and only if the restriction
I'™g: Ker"(4 v B, A)—T'"*Y4 is a weak equivalence.

Consider the commuting diagram of fibrations:

KerAvB,4) T[™WAvB,4) TI"B)
g Mg X TWf
T=+yg I'»+i4 X T™WB ™pB

The map I'™g: Ker™(4 v B, A)—=T"*14 is a weak equivalence if and only
if the homomorphism

T™g X T™Wf:T™(4 v B, A)—~T"+V4 X T™B
is a weak equivalence.
4.10. LEMMA. The homomorphism T"Wg X I'™fis a weak equivalence.

PrOOF. Let M and M’ be simplicial monoids and suppose that 4 : M — M’
is a simplicial homomorphism which is a weak equivalence. In general it
does not follow that the group completion Uh: UM — UM’ is a weak equi-
valence. But if the monoids M and M’ are “nice” (explained below) then it
will follow that Uh is a weak equivalence. In particular this argument will
apply to the homomorphism

[™W+g XT™W+ f:T™W+(4 v B, 4)—>T+V+4 X [W+R,
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the group completion of which is IT™g X I'")f. Hence 4.10 will follow
from 4.11.

Let u: M — UM the homomorphism that (dimensionwise) is the com-
position M — FM — FM/N = UM of the quotient map and of the in-
clusion M — FM as generators. The simplicial monoid M is “nice” if
the map of classifying complexes [7, p. 83] Wu: WM — WUM is a weak
equivalence.

Consider the commuting diagram:

UM — WUM — WUM - WM
l Uh l Wuh lWUh l Wh
UM’ — WUM'— WUM'— WM’

where UM — WUM — WUM is the natural principal fibration [7, p. 83]
such that WUM is contractible. Since 4 is a weak equivalence it follows that
Wh is a weak equivalence. It the monoids M and M’ are “nice”, then it also
follows that WUh is a weak equivalence, and therefore that Uk is a weak
equivalence.

It is known that free simplicial monoids are “nice” (see [5, 5.4]). Since
the functors W and U commute with cartesian products, it follows that
a cartesian product of free simplicial monoids is “nice”. The simplicial
monoids I'"™*(4 v B, A), I'**Y4 and "™*+B are free and therefore 4.10
follows from

4.11. LEMMA. The homomorphism I'™*g X I'"™* fis a weak equivalence.

The rest of this section is devoted to proving 4.11 which will finish the
proof of 4.7.

4.12. The filtration of C,,,Z,. Let n=1, p, and k be integers such
that 0 =k = p. The simplicial subset E,C,.,Z, consists of the simplices
weC, L, such that

(a) Ry (W)Esk,_ WX, whenk <i<j=p,

() R;(w)ESk WX, ywhen 1 =i<k<j=p.

The following properties of the simplicial sets E,C,, X, are immediate
consequences of the definition.

4.13. PrROPOSITION. Let p =0 and q = 0 be integers.
(i) For0 =k < p, thesimplicial set E,C, %, is contained in Ey, , \C, + \Z,. At
the extremes E,C, , X, = C,X,and E,C, X, is C, ,Z,.
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(i) The simplicial subset E,C,.\ Xy, C Cyi1Z,4, s closed under the
diagonal action of the subgroup L, XX, C %, . ,.

(iii) Using 2.10, the cartesian product C, X, X C,Z, is identified with a
X, X X equivariant simplicial subset of E,C, . \Z, .,.

4.14. REMARK. The simplicial subset T™*(X, 4) of I'* X consists of
the simplices in I'*X of the form [w,a,...,aq,x,,...,x,] where
w€&€E,C, X, @, €4 and x; E X are simplices.

We now recall some facts about simplicial homotopies which are needed for
the proof of 4.11.

4.15. Simplicial homotopies. The interval I is the simplicial set that has
two O-simplices 0 and 1, and a 1-simplex e such that d,¢ = 0 and dje = 1. These
simplices generate /. Thus

IO={O’ l}s
I,={0,1,¢},
Ik={05 1,...,Sk_1... fi...,SQe,...}.

The realization |/| is homeomorphic to the unit interval [0, 1].

A (simplicial) homotopy is a simplicial map H: X XI—=Y.Let Hy: X~ Y
denote the composition X =X X {0} CX XI—Y of the homotopy and
of the inclusion. Likewise H,: H — Y denotes the composition X X {1}—
XXI—-Y,

ProoF oF 4.11. Since A and B are discrete, it follows that the sim-
plicial monoid I'™*(4 v B, 4) is a disjoint union U, ., Z,, where Z,, is
defined by

Z,,=E,Coi 1214 Xg x5, (A — %)? X(B — »)°.

(Given a group G acting on simplicial set X and Y, let X X Y denote the
orbit space of the diagonal action of Gon X X Y.)

Likewise the simplicial monoid I'"*Y*4 is a disjoint union U, ,.,C,,
where C, , is defined by

Gy =(Cr 12, X G Z)) Xy x5, (A — #)? X (B — %)%,

Note that, by 4.3(iii), C,, is a simplicial subset of z, ,.
The homomorphism '™+ g X I'™* fis a disjoint union of simplicial maps
hyy:Z,,—C,,given by
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hogw,anay...,8,,by,...,0]=[TW),a,...,a,,b,...,b,]
where a, €4, b, EB, and where

T: WE,,,— WE, X WE,

The restriction of T to a map T:E,C,.,%,,,—~C,1 1%, XCXZL, is a
X, X Z-equivariant retraction. Hence h,,:Z,,—C,, is a retraction. To
finish proving 4.11 we will show that 4, , is homotopic to the identity map
Z,y—Z,,.

A homotopy (4.14) G: E,C, 1%, X I~ E,C, X, ., is defined by

G(ao, ceey Oy 0)‘—"((10, .o .,ak),
Glap, ..., ap, 1) =(T(g), - .., T(@)) = T(axo, ..., ),
G(ao,. ey Opy Sp_q. . '§i' . .Soe)=(T(ao),. ey T(a,»),aHI, cae ,ax).

It is straightforward to check that G is a X, X X -equivariant homotopy such
that G, (4.14) is the identity map and G, is the retraction

T:E,CosiZprqe— Coi1Zp X CaZqs
Let H: Z,, X I —~Z, , be the homotopy defined by
H([w’ab- . -;apabh ... ’bq]s t)= [G(W’ !)’ab o sap; bh- .. :bq]

where t €1 is a simplex. It follows from the previous paragraph that H is a well
defined homotopy, that H, is the identity map Z,,— C,,, and that H, is the
retraction i, ,: Z, , — C,,. This completes the proof of 4.11 and also the proof
of 4.7.

§5. Proof of Lemma 3.8(iv)

In this section we define the word length filtration, and use it and the
filtration of C, . X, to prove 3.8(iv).

5.1. The word length filtration of T*X [1, §6]. Let m = 0 be an integer.
Then T} X is the simplicial subset of I'* X consisting of the simplices
[w, x, . ..,x,]JET'* X such that p < m. For integers m = n, it follows that
It X cI}X, and that the union U, . I} XisT+X.

5.2. The induced filtrations. The intersections IP* X =T"*X NI} X
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give the word length filtration of I'™* X, Likewise I'™* (X, 4) is filtered by the
intersections I'"* (X, 4) =T'™*(X,4) N T, X.

5.3. The filtration quotients are denoted:
D, X=T; XTI} X,

DX =TP+ XTI X,

D®(X, 4) =T+ (X, AYTOA(X, A).

PROOF OF 3.8(iv). We wish to prove that T™X =I'"(CX, X) is contract-
ible. It follows from the results in [5, §5] that if the free simplicial monoid
I'™+(CX, X)is contractible, then its group completion I'(CX, X) is contract-
ible. We show that '+ (CX, X) is contractible by proving that each filtration
quotient D™(CX, X) is contractible.

Let k be an integer such that 0 <k = p. Let J, denote the simplicial sub-
set of D{"(CX, X) consisting of the simplices [w, x;, ..., x,]EDM(CX, X)
such that weE,C,, X, (4.12). It follows from 4.13(i) that J, is con-
tained in J, ,,, that J, = D{’CX, and that J, = D{(CX, X). We show that
D"(CX, X) is contractible by showing that each quotient J,/J,_,, 1 =b = p,
is contractible.

5.4. We define a contracting homotopy H: CX XI—CX (i.e. H, is the
identity map and H, is the trivial map CX — {*} C CX) by the formulas

H((p,x),0)=(p,x), (p,x)ECX asimplex,
H((p,x),1)=(k,*) (= basepoint of X),
H({(p,x),sk_1...5...5%¢e)=(p, Xx), i+1=p,
H(p,x), Sk—1...5...5¢e)=0+1,0t'"?x), p<i+]l.

We use H to define a contracting homotopy of J,/J, _,. Each element u €J,
has by definition a representative of the form [w,x,,...,x,] such that
wEEC, ,,Z,. It follows from a straightforward but tedious computation that
uis in J, but not in J, _ if and only if the representative u = [w, x,, ..., X,] is
unique up to the action of X, X £, (i.e. ifu =[v, y1,..., y,] and vEE,C, ;. |Z,,
then v=w .o for some a€Z, X Z,_;). A contracting homotopy G : J;/J;_; X
I—J./J,_, is defined by

Gk(u’ t) = [W, Xis o ooy Xy H(xk+l, t): ) H(xp: t)]

where ¢ €1 is a simplex and H: CX X I — CX is the contracting homotopy.



Vol. 66, 1989 SIMPLICIAL GROUP MODELS FOR Q"S"X 349

The homotopy G, is well defined because of the uniqueness up to X, X Z,_,
action of the representative.

Appendix

In this appendix we consider the relationship between the two loop functors
G (3.6) and , and between the two suspension functors E and S.
The latter is easy.

PROPOSITION [7, p. 125). Let X be a pointed simplicial set. The realization
|EX | is naturally homeomorphic to S| X |.

To relate the functors G and Q we define a third loops functor L
[7, p. 99]. Given a reduced simplicial set X satisfying the Kan extension
condition [7, p. 2], a simplicial set LX having the homotopy type of loops on X
is defined as follows. The k-simplices of LX are the (k + 1)-simplices x € X,
such that d,x =sf (xEX, is the unique O-simplex of X). A natural
weak equivalence f: LX— GX is defined by f(x)=x, the corresponding
generator of GX.

The useful property of the functor L is that it commutes with the total
singular functor sing [7, p. 2], in the sense that for a pointed space Y, thereis a
natural isomorphism

Lsing Y =sing QY

(where we use a pointed version of sing).

The functors | | and sing are adjoint and, for X a pointed simplicial set,
there is a natural weak equivalence X —sing| X| [7, §16].

Combining the last two paragraphs we obtain

PROPOSITION. Let X be a reduced simplicial set. The following is a diagram
of weak equivalences:

GX—Gsing| X | < Lsing| X| =sing Q| X].

There are natural inclusions 1y: X — GEX (3.10) and 14, : | X| = QS| X]|.
The following proposition shows that these inclusions are naturally equivalent.

PROPOSITION. Let x be a pointed simplicial set. The following diagram
commutes and the indicated maps (=) are weak equivalences:
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X—GEX = Gsing|EX| < Lsing|EX|
\ I
sing| X | = sing QS | X | =sing Q|EX|.
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